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Abstract. When a solution of the one-dimensional nonlinear Schrödinger equation is disturbed
by a harmonic function of the space variable, the solution pattern may drift in space as time evolves.
The value and the direction of the drifting velocity vary with time. To understand this phenomenon,
a perturbation analysis is performed. The drifting velocity given by the analysis agrees well with
the direct numerical result.

1. Introduction

The nonlinear Schrödinger (NLS) equation has been used to model many physical processes,
such as optical pulse propagation in fibres or in uniform plasma [1]. Intensive studies have
been made on properties of the equation and its solutions, such as soliton solutions [2–4],
modulation instability of solutions [5], the homoclinic structure of the equation [6], and so on.

In our numerical studies on the one-dimensional NLS equation, we have frequently
observed that if a solution of the NLS equation is disturbed by a spatially harmonic perturbation
(i.e., a perturbation that is a harmonic function of spatial variable only), the pattern of the
solution drifts in space as time progresses‡. Therefore we ask whether pattern drifting is
a general phenomenon in the NLS equation. In this paper we first numerically study what
happens when the spatially homogeneous solution of the one-dimensional cubic-repulsive NLS
equation is disturbed by a spatially harmonic perturbation. We observe that pattern drifting
always occurs as long as perturbation is a linear combination of the harmonic functions sin(kx)
and cos(kx), where k is the wavenumber and x is the space variable, and the ratio of the two
combination constants is complex. Pattern drifting is in addition to the exponential growth of
the coherent structure due to the modulation instability. (Modulation instability refers to the
small amplitude and phase perturbation of a soliton solution of the NLS equation that tend
to grow exponentially as a result of the combined effects of the nonlinearity of the equation
and diffraction (in the spatial domain)/dispersion (in the time domain) of the solution to the
NLS equation.) Pattern drifting is also observed when we disturb the Jacobi elliptic-function
solution of the NLS equation or the spatially homogeneous solution of the perturbed NLS
equation. To understand the numerical observations of the pattern drifting, we perform further

† Corresponding author.
‡ Figure 3.3.5 of [4] was used by the book’s authors to show the numerical homoclinic instability. Though not
mentioned in the book, pattern drifting can be seen from the figure.
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perturbation analysis and obtain a formula for the drifting velocity. The formula agrees well
with the direct numerical results. The numerical and the analytical results together show that
pattern drifting is a general phenomenon in the NLS equation.

This paper is organized as follows. In section 2, we present numerical observations
of pattern drifting when the spatially homogeneous solution of the one-dimensional cubic-
repulsive NLS equation is disturbed by a spatially harmonic perturbation. In section 3, we
give the results of the perturbation analysis (the analysis itself is presented in the appendix) and
use the results to understand the numerical observations of the pattern drifting. In section 4,
we numerically study pattern drifting when the Jacobi elliptic-function solution of the NLS
equation is perturbed. In section 5, we numerically investigate pattern drifting when the
spatially homogeneous solution of the perturbed NLS equation is disturbed. Finally, the
conclusions are presented in section 6.

2. Pattern drifting for the spatially homogeneous solution

We study the one-dimensional cubic-repulsive NLS equation

i∂tψ + ∂2
xψ + |ψ |2ψ = 0 − L/2 � x � L/2 t � 0 (1)

where ψ = ψ(x, t) is the wavefunction and L is the system length. In this paper, we study the
equation under the periodic boundary condition. The equation has the spatially homogeneous
solution

ψh(x, t) = ψ0 ei|ψ0|2t (2)

where ψ0 is a real constant. (This solution becomes the steady-state solution ψ(x, t) = ψ0

under a trivial gauge transformation.) Let the spatially homogeneous solution be perturbed at
t = 0 so that the NLS equation has the following initial conditions:

ψ(x, 0) = ψ0 + εψ0[Y1 cos(kx) + Y2 sin(kx)] (3)

where ε is a small real parameter, k is the (real) wavenumber, and Y1 and Y2 are complex
numbers. With these initial conditions and the periodic boundary condition, we numerically
solve equation (1) by an improved split method with an accuracy of the third order in time.

The results of the numerical simulation are shown in figure 1 for the parameter values
ψ0 = 2, ε = 0.01 and k = 0.9k0, where k0 = √

2ψ0 is the critical value of the wavenumber
for modulation instability [7]. In all plots of the figure, modulation instability is induced
and therefore a coherent structure appears as expected. At the top of each plot, the initial
perturbation is specified, which is a combination of the symmetric mode cos(kx) and the
asymmetric mode sin(kx). In figure 1(a), the initial perturbation contains only the symmetric
mode, and the spatial structure of the solution does not move in space when time evolves
as expected. In figure 1(b), however, the spatial structure of the solution drifts with time.
Consequently, the reflection symmetry of the solution pattern about a line of x = constant
breaks. (The pattern drifting shown in figure 1(b) is a short-time behaviour: the pattern drifts
less and less as time progresses.) The initial perturbation contains both the symmetric and the
asymmetric modes, and the ratio of the coefficientsY1 andY2 is a complex number. The drifting
persists no matter how we refine the spatial resolution of the numerical scheme we use. One
might guess, with good reason, that the drifting (and the consequent symmetry breaking) is to be
induced whenever the initial perturbation contains the asymmetric term sin(kx). But the guess
is only partially correct: containing an asymmetric mode in the initial condition is not enough,
though necessary, to cause pattern drifting. This can be seen from figure 1(c), where there is no
pattern drifting even though the initial perturbation contains sin(kx). Furthermore, as shown
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∋ (b)  ψ(x, 0) = ψ0+  ψ0 (cos(kx) + 0.5i sin(kx))∋

(c)  ψ(x, 0) = ψ0+  ψ0 sin(kx)∋ (d)  ψ(x, 0) = ψ0+  ψ0 (cos(kx) + sin(kx))∋

Figure 1. Contour plots of numerical solutions of the NLS equation with the initial perturbation
shown at the top of each plot. The initial conditions give a spatially perturbed homogeneous
solution. Pattern drifting occurs only in (b). Modulation instability is induced in all the plots.

in figure 1(d), drifting cannot be induced even when both asymmetric and symmetric modes
are contained in the initial perturbation if the ratio of the coefficients, Y1/Y2, is a real number.

In addition to those shown in figure 1, more simulations for other choices of coefficients
Y1 and Y2 in the initial conditions (3) have been performed. All of them show that, consistent
to the observations in figure 1, pattern drifting occurs whenever the coefficients in the initial
condition (3) satisfy |Y1| �= 0, |Y2| �= 0 and Y2/Y1 is complex.

All our numerical simulations show that pattern drifting occurs when the perturbation
in equation (3) consists of both asymmetric and symmetric terms, and the coefficients of
the two terms are not along the same line in the complex plane. Using the electrodynamic
terminology, this kind of perturbation may be referred as ‘circularly polarized’, and ‘linearly
polarized’ otherwise.

To study pattern drifting quantitatively, we trace the motion of the extremum of the initial
perturbation that is closest to x = 0 among all extrema. The extremum moves to point A and
then point B in figure 2(a) as time evolves, where point A is a maximum becoming a minimum
later. Let xe(t) be the x-coordinate of the extremum at time t . The dotted curve in figure 2(b)
is xe(t) from the numerical results shown in figure 2(a). (The continuous curve is from the
perturbation analysis given in the following section.) The velocity of the pattern drifting is
given by the slope of the curve for xe(t). It is clear from the figure that drifting velocity varies
with time. The direction of the drifting velocity also varies with time, as can be clearly seen
in figure 1(b).
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Figure 2. (a) A contour plot of the perturbed spatially homogeneous solution when ψ0 = 2,
ε = 0.01 and k = 0.95k0, similar to figure 1(b). (b) Movement of the extremum of the spatial
structure of the solution closest to x = 0 when t = 0. The dotted curve is from the direct numerical
simulation shown in (a). The solid curve is from the perturbation analysis given in section 3. The
slope of the curves is the drifting velocity.

Pattern drifting should have applications in physics considering the wide use of the NLS
equation in studies of a variety of physical systems. For example, the NLS equation is the
governing equation for nonlinear pulses and beams of light or other electro-magnetic waves
propagating in a nonlinear media such as light fibres, see Chapter 1 of [1] for details. It is well
known that the NLS equation has soliton solutions of different types and a solution pattern
is formed. The drifting of the solution pattern studied in this paper should therefore have
applications in physics of nonlinear pulses and beams. Pattern drifting changes the location
of the soliton. (Though the drifting is a short-time behaviour, the soliton, whose location
moves a short time after perturbation stays in its new location for later times.) Therefore
pattern drifting should play an important role in the physics of pulses and beams propagating
in nonlinear media.

3. Perturbation analysis

To understand the pattern drifting phenomenon, we perform perturbation analysis. But why
perturbation analysis when it is well known that the NLS equation is integrable and the
solution of an integrable partial differential equation can be analytically found using the inverse
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scattering method [2, 4] and the Bäcklund transformation [8–10]? The mathematical formula
for the exact analytical solution is usually so complicated that it is difficult to use it to explain
such a complicated phenomena such as pattern drifting and thus a perturbation method may
be helpful. Our perturbation analysis follows the idea of the perturbation method introduced
in [7]. The solution of the NLS equation obtained from the analysis is given in the following
section, and is used in section 3.2 to derive an expression for the drifting velocity, which agrees
well with the numerical results presented in the previous section.

3.1. The perturbation-analytical solution of the NLS equation

As derived in the appendix, the solution of the NLS equation with the periodic boundary
condition in a neighbourhood of the spatially homogeneous solution and when the
wavenumber is close to its critical value for modulation instability is given by ψ(x, t) =√
ρ(x, t) exp[iθ(x, t)], where

ρ(x, t) = N + r(t) cos(kx − φ(t)) +
1

4N
r2(t) cos 2(kx − φ(t))

+
3

64N2
r3(t) cos 3(kx − φ(t)) + · · ·

θ(x, t) = 1

4N

∫ t

0
r2(τ ) dτ +

1

4N2
∂t [r(t) cos(kx − φ(t))]

+
1

64N3
∂t [r

2(t) cos 2(kx − φ(t))] + · · · .

(4)

HereN = 1
L

∫ L/2
−L/2 |ψ(x, t)|2 dx is the total number of quasi-particles, k is the wavenumber, and

r(t) and φ(t) are real functions of time, governed by Hamilton’s equations with the following
Hamiltonian function:

H(r, φ, pr, pφ) = 1

2

(
p2
r +

p2
φ

r2

)
+ V (r) V (r) = 1

8 r
4 + (δk)k3

0r
2 (5)

where pr and pφ are momenta conjugate to r and φ, respectively, and V (r) is the potential. The
potential is φ-independent and therefore the angular momentum is conserved. Solution (4) is
in terms of r(t) and φ(t). The solution can also be written in terms of another set of functions
of time, α(t) and β(t), when (r, φ) are considered to be the polar coordinates on the αβ-plane.
That is, r(t) =

√
[α(t)]2 + [β(t)]2 and φ(t) = tan−1[β(t)/α(t)].

3.2. The drifting velocity

It is clear from equation (4) that ρ(x, t) reaches its maximum when kx −φ(t) = 0. Therefore
the location of the extremum, xe(t), as defined previously, is given by

xe(t) = 1

k
φ(t) (6)

where the function φ(t) can be found numerically by solving the Hamiltonian system (5) with
a given initial condition. The solid curve in figure 2(b) is for xe(t) given by equation (6). The
dotted curve in the figure, as explained previously, is from the direct numerical integration of
the NLS equation. For both the curves, the initial condition is given by α(0) = 0.8, β(0) = 0,
α̇(0) = 0 and β̇(0) = 0 (and then the initial conditions for ρ(x, t) and θ(x, t) are given by
equation (4)). Good agreement of the two curves indicates that the perturbation analysis gives
a good approximation to the solution of the NLS equation.
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The drifting velocity v(t) is the time derivative of xe(t). Therefore,

v(t) = 1

k
φ̇(t) (7)

where φ̇(t) = [α(t)β̇(t) − α̇(t)β(t)]/r2(t) = r2(0) φ̇(0)/r2(t). It is clear from equation (7)
that pattern drifting is due to a rotation in the αβ-plane and that the drifting velocity is
proportional to the angular velocity of the rotation. The rotation is a free rotation since the
potential in equation (5) is φ-independent. One may say that pattern drifting is caused by the
ignored-coordinate instability [11] because the φ coordinate is ‘ignored’ in the potential, and
thus call the instability the drifting instability.

The drifting velocity can also be expressed in terms of Y1 and Y2, the coefficients in the
initial conditions (3). To do so, we consider solution (4) for t = δ ≈ 0. In this case, r(δ) is
small, the solution is close to the spatially homogeneous solution ψ(x, t) = ψ0 = √

N , and
the quadratic and higher-order terms in r(δ) are negligible. Thus ρ ≈ N + r cos(kx − φ) =
N + (α cos kx + β sin kx) and θ ≈ 1

4N2 ∂t [r cos(kx − φ)] = 1
4N2 (α̇ cos kx + β̇ sin kx), and

ψ(x, δ) =
√
N +

[
1

2
√
N

α(δ) +
i

4N3/2
α̇(δ)

]
cos(kx)

+

[
1

2
√
N

β(δ) +
i

4N3/2
β̇(δ)

]
sin(kx) + · · · . (8)

Comparing this with the initial conditions (3), we have

Y1 = 1

2εN
α(0) +

i

4εN2
α̇(0)

Y2 = 1

2εN
β(0) +

i

4εN2
β̇(0).

(9)

Hence the imaginary part of Y1Y
∗
2 , where ∗ denotes a complex conjugate, is proportional to

φ̇(0), i.e., φ̇(0) = − 8ε2N3

r2(0) |Y1||Y2| sin γ , where γ is the angle between the vectors representing
Y1 and Y2 in the complex plane. equation (7) becomes

v(t) = −8ε2N3

k r2(t)
|Y1||Y2| sin γ + · · · . (10)

Thus the drifting velocity is nonzero if and only if Y1, Y2 and the angle between them are all
nonzero, according to the perturbation analysis. This agrees with the numerical observations
shown in figure 1. Figure 1(c) is the initial conditions with Y1 �= 0, Y2 �= 0 and γ �= 0
and therefore the pattern drifts. The pattern does not drift in figure 1(a) because Y2 = 0; in
figure 1(c) because Y1 = 0; nor in figure 1(d) because γ = 0.

4. Pattern drifting for the elliptic-function solution

Pattern drifting can occur not only when the spatially homogeneous solution is perturbed, as
discussed above, but also when the following elliptic-function solution of the NLS equation [10]
is perturbed

ψe(x, t) = f (x)eiat f (x) =
√

2b dn(bx, c) (11)

where a, b and c are constants (b and c are related by b =
√
a − 1

8 (1 − c)), and dn(·, ·) is
the Jacobi elliptic function. The conservation of the quasi-particle number and the periodic
boundary condition requires the constants to satisfy 1

L

∫ L/2
−L/2[f (x)]2 dx = N and 4

b
K(c) = L,

where K(·) is the complete elliptic integral of the first kind.



Drifting of the solution pattern for the nonlinear Schrödinger equation 9125

0 10 20 30 40

− 2

− 1

0

1

2

Time t

S
pa

ce
x

(a)  ψ(x, 0) = f(x)+  ψ0 cos(kx)∋

0 10 20 30 40
− 2

− 1

0

1

2

(b)  ψ(x, 0) = f(x)+  ψ0 (cos(kx) + i sin(kx))∋

0 10 20 30 40

− 2

− 1

0

1

2

(c)  ψ(x, 0) = f(x)+  ψ0 (cos(kx) + 0.5i sin(kx))∋

Figure 3. Contour plots of numerical solutions of the
NLS equation with the initial perturbation shown at the
top of each plot. The initial conditions are a perturbed
elliptic-function solution. Pattern drifting occurs only
in (b). The modulation instability is induced in all the
plots.

Let the elliptic-function solution (11) be perturbed so that the initial condition reads

ψ(x, 0) = f (x) + εψ0[Y1 cos(kx) + Y2 sin(kx)] (12)

where all quantities are as defined previously. Choosing different values of Y1 and Y2, we
numerically integrate the NLS equation under the periodic boundary condition and find that
the pattern drifts when the elliptic-function solution is disturbed by a circularly-polarized initial
perturbation (i.e., |Y1| �= 0, |Y2| �= 0 and Y2/Y1 is complex in equation (12)), but does not when
disturbed by a linearly polarized perturbation. This is the same as for the perturbed spatially
homogeneous solution. Figure 3 shows the results of the simulation for N = ψ2

0 = 4,
ε = 0.01 and k = 0.9k0, where k0 = √

2N is the critical value of the wavenumber for
modulation instability. In figure 3(a), the initial condition contains only a cosine term and
there is no drifting. In figure 3(b), the initial perturbation is circularly polarized, and the
drifting is induced but the modulation instability is not. Therefore pattern drifting is not
necessarily related to modulation instability. The drifting velocity for the perturbed elliptic-
function solution is constant. In figure 3(c), both the modulation instability and the pattern
drifting are induced by circularly-polarized initial perturbation.

The perturbation analysis given in section 3 was performed near the spatially homogeneous
solution. The results of the analysis, however, is also applicable to the elliptic-function solution,
as shown in figure 4. The solid curve in the figure is for the amplitude square of the exact
solution, [f (x)]2, where f (x) is given in equation (11). The dotted curve is given by the

perturbation analysis, i.e., given by equation (4) with φ(t) = 0 and r(t) = r∗ = 2
√
k3

0 |δk|.
(At r(t) = r∗, the potential in equation (5) reaches its minimum.) The two curves agree with
each other very well. Therefore the elliptic-function solution can be approximately given by
the perturbation-analytical wavefunction (4) with φ(t) = 0 and r = r∗ (i.e., when the potential
in equation (5) reaches its minimum). In this sense, the elliptic-function solution corresponds
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function solution. The figure is for N = 4 and k = 0.95k0. The solid curve is for the exact elliptic-
function solution (11). The dotted curve is given by the perturbation analysis, i.e., equation (4)

with r = 2
√
k3

0 |δk| and φ = 0.

to the minimum of the potential in equation (5) at r = r∗.

5. Pattern drifting in the perturbed NLS equation

Finally, we report that pattern drifting is also observed in the one-dimensional perturbed NLS
equation

i∂tψ + ∂2
xψ + (|ψ |2 − g|ψ |4)ψ = 0 (13)

where g is a small parameter. The equation has the following spatially homogeneous solution:

ψ̃h(x, t) = ψ0 ei(|ψ0|2−g|ψ0|4)t . (14)

We numerically integrate equation (13) with the periodic boundary and initial conditions (3).
The simulation results (not given here) show a drifting phenomenon similar to that for the
(unperturbed-cubic) NLS equation shown in figure 1; a linearly polarized initial perturbation
does not induce pattern drifting, but a circularly-polarized initial perturbation does.

An interesting numerical observation is that pattern drifting suppresses pattern
competition, as shown in figure 5. (The one-dimensional NLS equation has two types of
solution patterns: the bright and the dark soliton pattern, see, for example, [7] and references
therein. Pattern competition is the phenomena that the two types of solution pattern co-
exist and appear randomly: no single pattern dominates over the other and it is impossible
to predict what pattern type will emerge in the next moment. The mechanism of pattern
competition is the crossing of the homoclinic point [7], whose existence is due to the bi-stability
of the nonlinear term in the NLS equation.) In figure 5(a), one sees pattern competition
but no pattern drifting because we have applied a linearly polarized perturbation given by
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Figure 5. Contour plots of solutions of the perturbed NLS equation (13) with ψ0 = 2, ε = 0.01,
g = 0.05 and k = 0.75k0. (a) Under a linearly polarized perturbation, pattern drifting is not
induced, but pattern competition is. (b) Under a circularly polarized initial perturbation, pattern
drifting is also induced, which suppresses the pattern competition observed in (a).

Y2 = Y1 = −2i
√
(k0/k)2 − 1. In figure 5(b), however, both pattern competition and

drifting are induced under a circularly-polarized initial perturbation with Y2 = eiπ/2Y1, where
Y1 = −2i

√
(k0/k)2 − 1. One can see from figure 5(b) that the ‘solitons’ line up, i.e., the

pattern is regularized by the pattern drifting. Therefore, pattern drifting may be used to control
irregularity or spatial-temporal chaos caused by pattern competition.

6. Conclusions

The drifting of the solution pattern is a common phenomenon in the NLS equation (1). It occurs
when the spatially homogeneous solution (2) or the elliptic-function solution (11) is disturbed
by a perturbation proportional to (Y1 cos kx +Y2 sin kx), where Y1 and Y2 are nonzero complex
numbers and are not along the same line in the complex plane. Pattern drifting also occurs when
the spatially homogeneous solution (14) of the perturbed NLS equation (13) is disturbed by a
harmonic perturbation. The pattern drifting breaks the reflectional symmetry of the solutions.
It is possible to induce pattern drifting without modulation instability. It is expected that pattern
drifting and the consequent symmetry breaking occur also in the one-dimensional attractive
NLS equation, in a multi-dimensional NLS equation and in other evolution equations.

Perturbation analysis provides an approximate solution (4) to the one-dimensional cubic-
repulsive NLS equation and expression (7) for the drifting velocity, which agree well with the
results obtained from direct numerical simulations. Drifting velocity is proportional to the
angular velocity of a rotation in the space spanned by the order functions introduced in the
perturbation analysis. It is expected that the perturbation method can also be applied to study
other evolution equations.
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Appendix

In this appendix we derive equation (4) using perturbation analysis.
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At first we change the form of the NLS equation (1) by applying the following three
transformations. (i) We apply a (trivial) gauge transformation so that the spatially homogeneous
solution of the NLS equation is a constant, i.e., ψh(x, t) = ψ0 = √

N , where N =
1
L

∫ L/2
−L/2 |ψ(x, t)|2 dx is the total number of quasi-particles. Under the transformation, the

NLS equation becomes

i∂tψ(x, t) + ∂2
xψ(x, t) + (|ψ(x, t)|2 − N)ψ(x, t) = 0. (15)

(ii) We write a solution of equation (15) as, as in the main text, ψ(x, t) =√
ρ(x, t) exp[iθ(x, t)], where ρ(x, t) is the non-negative square-root amplitude function and

θ(x, t) is the real-valued phase function of the solution. (iii) We use the scaled space variable
x ′ = kx, where k is the fundamental wavenumber, and the scaled time variable t ′ = ωt , where
ω is the fundamental frequency. Using the scaled variables (and omitting the prime in the
scaled variables x ′ and t ′ for simplicity), the square-root amplitude function and the phase
function satisfy the following equations:

k2

2ρ
∂2
xρ − k2

4ρ2
(∂xρ)

2 − ω∂tθ − k2(∂xθ)
2 + (ρ − N) = 0

k2ρ∂2
x θ + k2(∂xρ)(∂xθ) +

ω

2
∂tρ = 0 − L

2
� x � L

2
t � 0.

(16)

We study this equation under the periodic boundary condition and the conservation of the
quasi-particle number.

We are interested in a solution to equation (16), which is near the steady-state solution,
i.e., ρ ≈ ρ0 = N and θ ≈ θ0 = 0. Let such a solution be written as

ρ = ρ0 + ε̄ρ1 + ε̄2ρ2 + ε̄3ρ3 + · · ·
θ = θ0 + ε̄θ1 + ε̄2θ2 + ε̄3θ3 + · · · (17)

where ε̄ is the perturbation parameter, and the subscripts of the variables ρ and θ indicate the
order of approximation. Furthermore, we are interested only in the case where the wavenumber
k in equation (16) is close to its critical value for modulation instability (i.e., k ≈ k0 = √

2N )
and that the frequency ω is close to zero. Therefore we write

k = k0 + ε̄k1 + ε̄2k2 + ε̄3k3 + · · ·
ω = ω0 + ε̄ + ε̄2ω2 + ε̄3ω3 + · · · (18)

where the subscripts of the variables k and ω indicate the order of approximation.
Substituting equations (17) and (18) into (16), we have a sequence of equations for ρi(x, t)

and θi(x, t), i = 0, 1, 2, . . . , for different orders in ε̄. For the zeroth order in ε̄, we have the
steady-state solution

ρ0(x, t) = N θ0(x, t) = 0. (19)

For the first order in ε̄, we have ∂2
xρ1 + 2ρ0

k2
0
ρ1 = 0 and ∂2

x θ1 = 0. The general

solution of these equations is ρ1(x, t) = A(t) exp(i
√

2ρ0

k0
x)+B(t) exp(−i

√
2ρ0

k0
x) and θ1(x, t) =

C(t)+D(t)x, where A(t), B(t), C(t) and D(t) are all functions of time only. In order to satisfy
the periodic boundary condition, we must choose D(t) = 0 and

√
2ρ0/k0 = 0, 1, 2, . . . . We

take
√

2ρ0/k0 = 1, i.e., k0 = √
2N , because expansion (17) is made for k ≈ k0. Therefore

ρ1(x, t) = A(t) exp(ix) + B(t) exp(−ix)

θ1(x, t) = C(t).
(20)
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For the second order in ε̄, we have

∂2
xρ2 + ρ2 +

3

2ρ0
A(t)2 exp(i2x) +

3

2ρ0
B(t)2 exp(−i2x) − ∂tC(t)

+
A(t)B(t)

ρ0
−

√
2ρ0k1

ρ0
A(t) exp(ix) −

√
2ρ0k1

ρ0
B(t) exp(−ix) = 0

∂2
x θ2 +

1

8ρ2
0

A(t) exp(ix) +
1

8ρ2
0

B(t) exp(−ix) = 0

(21)

which has the solution

ρ2(x, t) = 1

2ρ0
(A(t)2 exp(i2x) + B(t)2 exp(−i2x)) +

[
∂tC(t) − A(t)B(t)

ρ0

]

− ik1√
2ρ0

[A(t)x exp(ix) − B(t)x exp(−ix)]

θ2(x, t) = 1

4ρ2
0

[∂tA(t) exp(ix) + ∂tB(t) exp(−ix)].

(22)

In the expression for ρ2 above, the term [∂tC(t) − A(t)B(t)/ρ0] should be zero due to the
conservation of the quasi-particles. Thus C(t) = 1

ρ0

∫ t

0 A(τ)B(τ) dτ . Furthermore, the last

term in the expression for ρ2 in equation (22), −(ik1/
√

2ρ0)[A(t)x exp(ix)−B(t)x exp(−ix)],
should also be zero because of the periodic boundary condition, i.e., k1 = 0. Hence

ρ2(x, t) = 1

2ρ0
[A(t)2 exp(i2x) + B(t)2 exp(−i2x)]

θ2(x, t) = 1

4ρ2
0

[∂tA(t) exp(ix) + ∂tB(t) exp(−ix)].
(23)

j For the third order in ε̄, the equations for ρ3(x, t) and θ3(x, t) are

∂2
xρ3 + ρ3 +

3

2ρ0
[(A(t))3 exp(i3x) + (B(t))3 exp(i3x)] − A(t)B(t)ω2

ρ0

−exp(ix)

4ρ2
0

[∂2
t A(t) + 2A(t)2B(t) + 2(2ρ0)

3/2k2A(t)]

−exp(−ix)

4ρ2
0

[∂2
t B(t) + 2B(t)2A(t) + 2(2ρ0)

3/2k2B(t)] = 0

∂2
x θ3 − 1

4ρ3
0

[
A(t)∂tA(t) exp(i2x) + B(t)∂tB(t) exp(−i2x))

+
ω2

4ρ2
0

(∂tA(t) exp(ix) + ∂tB(t) exp(−ix)

]
= 0.

(24)

Again, we use the periodic boundary condition and the conservation of the quasi-particle
number to find that the last three terms in the equation for ρ3 should be eliminated. In other
words, ω2 = 0 and

d2

dt2
A(t) + 2k3

0(δk)A(t) + 2[A(t)]2B(t) = 0

d2

dt2
B(t) + 2k3

0(δk)B(t) + 2[B(t)]2A(t) = 0
(25)

where δk = k − k0. Therefore, ρ3(x, t) and θ3(x, t) are given by

ρ3(x, t) = 3

16ρ2
0

[A(t)3 exp(i3x) + B(t)3 exp(−i3x)]

θ3(x, t) = − 1

16ρ3
0

[A(t)∂tA(t) exp(i2x) + B(t)∂tB(t) exp(−i2x)].
(26)
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Adding the solutions ρi(x, t), i = 0, 1, 2, 3, given in equations (19), (20), (23) and (26),
and doing the same for θi(x, t), we have, up to the third order in the perturbation parameter

ρ(x, t) = N + [A(t) exp(ikx) + B(t) exp(−ikx)]

+
1

2ρ0
[(A(t))2 exp(i2x) + (B(t))2 exp(−i2kx)]

− 3

16ρ2
0

[(A(t))3 exp(i3x) + (B(t))3 exp(−i3x)]

θ(x, t) = 1

ρ0

∫ t

0
A(τ)B(τ) dτ +

1

4ρ2
0

[∂tA(t) exp(ikx) + ∂tB(t) exp(−ikx)]

− 1

16ρ3
0

[A(t)∂tA(t) exp(i2kx) + B(t)∂tB(t) exp(−i2kx)].

(27)

Here we have come back to the original (un-scaled) space and time variables.
The functions A(t) and B(t) must be complex conjugate to each other so that the

square-root amplitude ρ1(x, t) in equation (20) is real, as it should be. Therefore we write
A(t) = 1

2 [α(t) − iβ(t)] and B(t) = 1
2 [α(t) + iβ(t)], where α(t) and β(t) are real functions of

time and called order functions [7]. From equation (25), the order functions satisfy

d2

dt2
α +

1

2
αβ2 +

1

2
α3 + 2k3

0(δk)α = 0

d2

dt2
β +

1

2
βα2 +

1

2
β3 + 2k3

0(δk)β = 0.
(28)

These equations define a Hamiltonian system with the Hamiltonian function H = 1
2 (α̇

2 +
β̇2) + V (α, β), where V (α, β) = 1

8 (α
2 + β2)2 + k3

0(δk)(α
2 + β2) is the potential. In the polar

coordinates (r(t), φ(t)) on theαβ-plane, the Hamiltonian is as given in equation (5). Using r(t)

and φ(t), instead of A(t) and B(t), solution (27) of the NLS equation becomes equation (4).
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